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Chapter 4 Sample Exercises

4.1 Show that for x(t) = a sin(2πft), an observation period T equal to any integral
multiple of the period 1/f yields a probability density function of x(t) given by
equation (4.4).

4.2 Show that u′2 =
∫∞
−∞(u− U)2p(u)du.

4.3ú The file “TurbulenceSample.txt” contains data obtained by hot wire anemometry
in a wind tunnel boundary layer. The streamwise velocity signal was sampled at
60 kHz for a total time of 30 seconds. Estimate the probability density function
of the data, as defined by equation (4.3), by plotting the histogram of the data
choosing appropriate bin sizes ∆x.

4.4ú Obtain the autocorrelation R(τ) for the turbulence signal provided by “Turbu-
lenceSample.txt” and compare it with those for the white and pink noise signals
in “NoiseSample.txt”. Assuming Taylor’s frozen flow hypothesis, apply equations
(4.54) and (4.55) to calculate the integral length scale Lx and Taylor microscale
λ of the turbulence.

4.5ú The file “TurbulenceSample2.txt” contains the streamwise u, vertical v, and span-
wise w components of velocity near the bottom wall of a channel flow from DNS.

a. Plot the joint probability density function of u/urms and v/vrms, choosing
appropriate bin sizes. A nice way to visualise this is to superimpose contours
of the joint-pdf on top of a scatter plot of u/urms and v/vrms. Does it imply
a positive or negative correlation between the two components? The slope
of the line of best fit should equal the correlation coefficient.

b. Determine the Reynolds shear stress (i) from the joint-pdf as in equa-
tion (4.35) and (ii) as the time-average of u′v′ from the data records.

4.6 Show that E(f) for the first-order pink noise signal (i.e., having R(τ) = e−λτ ) is
given by equation (4.44). Find also the spectrum function for the second-order
pink noise signal whose autocorrelation is given by equation (4.45).

4.7ú Plot the one-dimensional energy spectrum of the velocity signal from the file
“TurbulenceSample.txt”. Explore how (i) the period and (ii) the sampling rate
of the given turbulence signal affect the location of the first spectral estimate (i.e.
E(1)) and the aliasing frequency. Explore also how splitting the total available
signal into shorter batches can be used to improve the accuracy of spectral esti-
mates. Compare this spectrum of a real turbulence signal with those computed
for the white noise and pink noise signals provided in “NoiseSample.txt”
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