I. P. Castro & C. Vanderwel, Turbulent Flows: An Introduction, IOP, 2021.

Chapter 8 Sample Exercises

ERRATA: Please note there is a typo in the eBook in Question 8.2(a) in the expression for Re_{θ} which has been corrected below.

- **B** 8.1. The file "TBLData.txt" contains the velocity profile of a smooth-wall turbulent boundary layer at $Re_{\theta} = 4,060$ from DNS by Schlatter and Orlu (2010). In this exercise we will look at how the velocity profile compares with expected viscous sublayer, log law, and wake profiles.
 - a. Plot the velocity profile U^+ vs. y^+ in linear axes. Zoom in to the near wall region and compare the profile with $U^+ = y^+$ which we expect to see in the viscous sub-layer. To what value of y_+ is this valid? What percentage of the boundary layer depth (in terms of δ) does this region cover?
 - b. Zoom out and adjust the axes to display this plot of U^+ vs. y^+ in log-linear axes. Fit the log law eq (9.22) using $\kappa = 0.384$ and A = 4.173.
 - c. Plot the velocity profile against outer units (ie. U^+ vs. y/δ). Plot the loglaw with the wake function (ie. eq. 9.27) with $\Pi = 0.55$. Note how this fits well in the outer region (and clearly doesn't apply beyond $y/\delta = 1$).
- 8.2. In this exercise we will consider the integral parameters that describe the velocity profile data given in the file "TBLData.txt". This file contains smooth-wall turbulent boundary layer at $Re_{\theta} = 4060$ from DNS by Schlatter and Orlu (2010).
 - a. Given that $c_f = 0.002971$ for this flow (and by definition, $u_\tau/U_\infty = \sqrt{c_f/2}$) integrate the velocity profile to confirm that the normalised displacement thickness is $Re_{\delta^*} = \int_0^\infty \left(\frac{U_\infty}{u_\tau} - U^+\right) dy^+ = 5633$, that the normalised momentum thickness is $Re_\theta = \frac{u_\tau}{U_\infty} \int_0^\infty U^+ \left(\frac{U_\infty}{u_\tau} - U^+\right) dy^+ = 4061$, and that H = 1.387.
 - b. Calculate the normalised value of the Rotta-Clauser integral thickness $Re_{\Delta} = \frac{U_{\infty}\Delta}{\nu} = \frac{U_{\infty}}{\nu} \delta^* \frac{U_{\infty}}{u_{\tau}} = Re_{\delta^*} \frac{U_{\infty}}{u_{\tau}}$. Determine the ratio of this with the normalised boundary layer thickness $Re_{\delta_{99}} = \frac{U_{\infty}\delta_{99}}{\nu} = \delta_{99}^+ \frac{U_{\infty}}{u_{\tau}}$ and compare this with the classical (constant) value of Δ/δ from the text.
- 8.3. This exercise explores the velocity profile over a rough surface and the challenges in determining u_{τ} and ΔU^+ . The file "RoughWallData.txt" contains measurements of the velocity and Reynolds shear stress over a surface covered with 320 grit sandpaper in channel flow by Flack, Schultz, Barros & Kim (2016).
 - a. Try to fit a log-law in the form of equation (8.49) to the measurements of U versus y, by adjusting the values of u_{τ} , d, and $C = (A \Delta U^+)$, assuming u_{τ} is unknown.

- b. Plot the Reynolds stress and get a second estimate of u_{τ} from the peak of $-\overline{uv}$ in the inertial (log) layer as $-\overline{uv}_{peak} = u_{\tau}^2$. How does this compare with your previous estimate from the log law fit?
- c. In these experiments, the wall shear stress was measured directly from the pressure drop in the channel and u_{τ} was found to be 0.155 m/s. How different were the previous estimates? Re-plot the log law in inner units and compare the results with a smooth wall channel flow (with kappa = 0.387, A = 4.5; ex 7.4) to determine ΔU^+ .